ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ИРКУТСКОЙ ОБЛАСТИ «ЗИМИНСКИЙ ЖЕЛЕЗНОДОРОЖНЫЙ ТЕХНИКУМ»

КОНТРОЛЬНАЯ РАБОТА

по ОП.05 Технические средства (по видам транспорта)

Вариант 1

	Выполнил:	Д.А. Выборов, студент группы ОПУТ(30)-21
	Проверил:	Н.В. Казанкова, преподаватель
Дата сдачи на рецензирование «_		2023 г.
Оценка работы		
Подпись преподавателя		_

ЗАДАНИЕ ДЛЯ ДОМАШНЕЙ КОНТРОЛЬНОЙ РАБОТЫ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ

ОП.05. ТЕХНИЧЕСКИЕ СРЕДСТВА (по видам транспорта) для специальности

23.02.01 Организация перевозок и управление на транспорте (по видам)

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Программой дисциплины «Технические средства» предусматривается изучение технических средств, состоящих из подвижного состава, железнодорожных сооружений и устройств, к которым относятся:

- железнодорожный путь с необходимым путевым развитием на раздельных пунктах для приема, скрещения, обгона, расформирования, формирования и отправления поездов и выполнения других операций;
 - сооружения для посадки, высадки и обслуживания пассажиров;
 - устройства для хранения, погрузки и выгрузки грузов;
- устройства автоматики, телемеханики и связи для обеспечения безопасности движения поездов и ускорения производственных процессов;
 - сооружения для экипировки и ремонта локомотивов и вагонов;
- устройства электроснабжения, включая тяговые подстанции и контактную сеть на электрифицированных линиях;
 - устройства водоснабжения;
- устройства материально-технического снабжения, назначения, свойств, эксплуатационных принципов построения работы всех действующих устройств автоматики, телемеханики И связи на железнодорожном транспорте.

В результате освоения дисциплины обучающийся должен уметь:

- различать типы устройств и погрузочно-разгрузочных машин;
- рассчитывать основные параметры складов и техническую производительность погрузочно-разгрузочных машин.

В результате освоения дисциплины обучающийся должен знать:

- материально-техническую базу транспорта (железнодорожного транспорта);
- основные характеристики и принципы работы технических средств транспорта (железнодорожного).

Задание к контрольной работе составлено в 15 вариантах. Вариант контрольной работы определяется по списку. Ниже приводится таблица, которой следует пользоваться при выборе варианта контрольной работы. Контрольная работа состоит из теоретических, практических заданий и методических указаний к их выполнению.

Ответы на вопросы и задачи контрольной работы должны быть сжатыми, четкими и иллюстрироваться необходимыми схемами, рисунками, таблицами.

Таблица выбора вариантов

№ варианта	ФИО обучающегося	№ вопросов
1	Авдеев Михаил Юрьевич	1, 11, 21, 31
2	Бубнов Валерий Александрович	2, 12, 22, 32
3	Букус Владимир Юрьевич	3, 13, 23, 33
4	Выборов Дмитрий Алексеевич	4, 14, 24, 34
5	Демидова Светлана Сергеевна	5, 15, 25, 35
6	Добрынин Денис Александрович	6, 16, 26, 36
7	Дыкус Дмитрий Сергеевич	7, 17, 27, 37
8	Касилов Антон Андреевич	8, 18, 28, 38
9	Лусс Евгений Владимирович	9, 19, 29, 39
10	Мурашова Ольга Дмитриевна	10, 20, 30, 40
11	Перевозчиков Алексей Юрьевич	1, 12, 23, 41
12	Полетаев Сергей Вячеславович	2, 13, 24, 35
13	Смуров Дмитрий Викторович	3, 14, 25, 36
14	Соколов Александр Александрович	4, 15, 26, 37
15	Турляков Александр Анатольевич	5, 16, 27, 38

Теоретические вопросы для контрольной работы

- 1. Дайте определение габаритам на железнодорожном транспорте.
- 2. Опишите назначение и классификацию вагонов, перечислите основные элементы вагонов.
- 3. Опишите технико-экономические характеристики вагонов.
- 4. Опишите пассажирский парк вагонов. Опишите грузовой парк вагонов.
- 5. Опишите систему нумерации подвижного состава

- 6. Опишите назначение и устройство колесных пар вагонов. Требования к содержанию колесных пар вагонов.
- 7. Опишите техническое обслуживание колесных пар вагонов. Неисправности колесных пар подвижного состава.
- 8. Опишите назначение и типы букс вагонов. Буксы с подшипниками качения (роликовыми подшипниками).
- 9. Опишите рессорное подвешивание вагонов
- 10. Опишите назначение и классификацию тележек вагонов.
- 11. Опишите назначение автосцепного устройства и его основные элементы.
- 12. Опишите требования, предъявляемые к устройствам автосцепки
- 13. Опишите назначение и элементы изотермического подвижного состава.
- 14. Опишите назначение вагонов промышленного транспорта.
- 15. Опишите назначение и виды контейнеров
- 16. Опишите систему отопления и водоснабжения пассажирских вагонов.
- 17. Опишите электрооборудование пассажирских вагонов.
- 18. Опишите систему вентиляции пассажирских вагонов, их кондиционирование
- 19. Опишите назначение и классификацию тормозов.
- 20. Опишите тормозное оборудование подвижного состава.
- 21. Опишите полное и сокращенное опробование тормозов.
- 22. Опишите требования к тормозному оборудованию подвижного состав
- 23. Опишите сравнение различных видов тяги.
- 24. Опишите классификацию тягового подвижного состава.
- 25. Опишите основные требования к локомотивам и мотор-вагонному подвижному составу.
- 26. Опишите общие сведения об электроснабжении электрифицированных железных дорогах.
- 27. Опишите системы тока и напряжения контактной сети.
- 28. Опишите классификацию погрузочно-разгрузочных машин и устройств.

- 29. Опишите классификацию погрузчиков.
- 30. Опишите назначение и классификацию тормозов.

Практические задания для контрольной работы

- 31. Определить мощность привода погрузчика N, (кВт); Исходные данные:
 - масса погрузчика = 2350 кг
 - масса груза, перемещаемого за 1 цикл = 0,6 т
 - коэффициент сопротивления перемещения погрузчика =0.03
 - уклон пути = 1‰
 - скорость передвижения погрузчика м/с, (= 9 км/ч)
 - КПД = 0.8
 - переводной коэффициент =102

N = ?

32.Определить техническую производительность погрузчика Пт, (т/ч): Исходные данные:

- масса груза, перемещаемого за 1 цикл, (т) =0,6 т
- продолжительность одного цикла 70 с.

 $\Pi_T=?$

33.Определить эксплуатационную производительность погрузчика (т/смену):

Исходные данные:

- коэффициент исп. по времени = 0,6
- -техническая производительность = 33 т/час
- -масса груза перемещаемая за 1 цикл = 0,6 т
- коэффициент машины по грузоподъемности = 2.35
- число рабочих часов в смене = 8 ч.

 $\Pi_{\text{CM}}=?$

34. Определить мощность приводов затрачиваемую электродвигателем механизма подъема крана N (кВт):

Исходные данные:

- -масса груза, перемещаемого за 1 цикл = 6000кг
- -масса захватного приспособления = 250кг
- -скорость подъема груза = 8 м/мин
- -КПД = 0.8

N = ?

35.Определить мощность затрачиваемую электродвигателем механизма передвижения крана N (кВт):

Исходные данные:

- масса крана = 18500кг
- масса груза, перемещаемого за 1 цикл = 6000 кг
- масса захватного приспособления = 250 кг
- коэф. трения = 0.08
- -диаметр колеса =60 см
 - скорость передвижения крана=1.5 м/с
- диаметр подшипника = 12 см
- коэффициент трения в подшипниках колеса =0,02
- коэффициент, учитывающий трение реборд ходовых колес о рельсы =1,8

N=?

36. Определить техническую производительность крана Пт (т/ч):

Исходные данные:

- масса груза, перемещаемого за 1 цикл, (т) =8т
- средняя высота подъема = 3,1м
- среднее расстояние перемещения крана = 40м
- среднее расстояние передвижения тележки крана = 12м
- скорость передвижения тележки = 30 м/мин
- скорость подъёма груза = 8 м/мин
- скорость перемещения крана = 50 м/мин ΠT =?

37. Определить техническую производительность крана Пт (т/ч): Исходные данные:

- -масса груза, перемещаемого за 1 цикл, (т) =5т
- средняя высота подъема =4м
- среднее расстояние перемещения крана =60м
- среднее расстояние передвижения тележки крана = 13м
- скорость передвижения тележки = 30 м/мин
- скорость подъёма груза =10 м/мин;
- скорость передвижения крана 90 м/мин Пт=?

38. Определить сменную производительность ленточного элеватора Тсм (т/смену):

Исходные данные:

- емкость ковша = 6л
- расстояние между ковшами =300мм
- скорость движения ленты =1,0 м/с
- коэффициент заполнения ковша =0,7
- плотность груза = 0.8 т/м^3

Tcm=?

39. Определить сменную производительность цепного элеватора Псм (т/смену):

Исходные данные:

- -масса единицы штучного груза = 9 кг
- скорость движения цепи =1,1м/с
- расстояние между ковшами = 400мм
- продолжительность рабочей смены =8ч Псм=?

40. Определить общую площадь склада Fck (м²):

Исходные данные:

Qcp- среднесуточный грузооборот =120т

Кпр- коэффициент, учитывающий дополнительную площадь =1,7

 $K_{\text{ск}}$ - коэффициент складочности, учитывающий перегрузку с одного вида транспорта на другой= 0.8

Тхр- продолжительность хранения грузов =2,0 суток q- средняя нагрузка на пол склада = 0.85 т/м^2 Fcк =?

41. Определить мощность привода погрузчика N, (кВт);

Исходные данные:

- масса погрузчика = 2350 кг
- масса груза, перемещаемого за 1 цикл = 0,8 т
 - коэффициент сопротивления перемещения погрузчика =0.03
 - уклон пути = 2‰
 - скорость передвижения погрузчика м/с, (= 9 км/ч)
 - КПД = 0.8
 - переводной коэффициент =102

N = ?

Методические указания к выполнению контрольной работы

Контрольная работа выполняется на листах формата А4 в печатном виде. На первой странице контрольной работы указывается вариант контрольной работы и номера вопросов. Ответ на каждый вопрос следует начинать с нового листа, указывая номер и условия задачи и вопроса. При выполнении вычислений по формуле вначале нужно указать формулу, расшифровать все ее составляющие, далее записать формулу с подставленными числовыми значениями и готовый ответ с указанием единиц измерения, если таковые имеются. В конце контрольной работы приводится список используемой литературы, ставится дата и подпись.

Выполненные в полном объеме контрольные работы сдаются в срок, который указанный в учебном графике. После получения отрецензированной контрольной работы студент должен ознакомится с замечаниями преподавателя, внести соответствующие исправления и дополнения. Не зачтенная контрольная работа выполняется заново или частично, в зависимости от рецензии преподавателя и также сдается на повторную проверку.

Вопросы №№ 1 – 29.

Для ответов на теоретические вопросы можно использовать книгу: Гундорова Е.П. Технические средства железных дорог: Электронная версия учебника. М.: ГОУ «УМЦ ЖДТ».

Задача № 30

Для определения мощности привода погрузчика необходимо воспользоваться формулой:

$$N = \frac{\left(Q_{\Pi} + Q_{\text{rp}}\right) \cdot (f + i) \cdot V_{\text{пер}}}{102 \cdot \eta_{\text{пер}}}$$
(κΒτ)

Где $\mathbf{Q}_{\mathbf{n}}$ – масса погрузчика, кг;

 ${f Q}_{rp}$ масса груза, перемещаемого за 1 цикл, кг;

f – коэффициент сопротивления перемещению погрузчика в ходовом устройстве;

 $\eta_{\text{пер}}$ — КПД передаточного механизма (0,8);

102 – переводной коэффициент размерностей;

 $\mathbf{V}_{\text{пер}}$ — скорость передвижения погрузчика, м/с.

і– уклон пути

Задача № 31

Для определения технической производительности погрузчика необходимо воспользоваться формулой:

$$\Pi_{\mathrm{T}} = 3600 \frac{Q_{\mathrm{rp}}}{\mathrm{T}_{\mathrm{II}}} \, \left(^{\mathrm{T}}/_{\mathrm{Y}}\right)$$

где: 3600 – переводной коэффициент;

 T_{u} продолжительность одного цикла, с (сумма времени отдельных операций);

 \mathbf{Q}_{rp} – масса груза, т;

Задача № 32

Для определения эксплуатационной производительности погрузчика необходимо воспользоваться формулой:

$$\Pi_{cM} = \Pi_m * k_{\theta} * k_{pp} * T_{cM \text{ (T/cMeHy)}}$$

где:

 T_{cm} – число рабочих часов в смене, ч;

 ${\bf k}_{{\bf B}}$ – коэффициент использования машины во времени;

 $\mathbf{k}_{\mathbf{rp}}$ – коэффициент использования машины по грузоподъёмности

 $(\mathbf{k}_{rp} = \mathbf{Q}_{rp} / \mathbf{Q}_{H})$.

Пт – техническая производительность погрузчика

Задача № 33

Для определения мощности приводов затрачиваемую электродвигателем механизма подъема крана необходимо воспользоваться формулой:

$$N = \frac{\left(Q_{\text{захв}} + Q_{\text{гр}}\right) \cdot V_{\text{под}}}{102 * \eta_{\text{под}}} \; (кВт)$$

где:

 ${\bf Q}_{{\bf 3axB}^-}$ масса захватного приспособления (250 кг);

 ${f Q}_{rp}$ масса груза, перемещаемого за 1 цикл, кг;

 $\eta_{\text{под}}$ – КПД механизма подъёма груза (0,8);

102 – переводной коэффициент размерностей;

 $\mathbf{V}_{\mathbf{под}}$ – скорость подъёма груза, м/с.

Задача № 34

Для определения мощности приводов затрачиваемую электродвигателем механизма передвижения крана необходимо воспользоваться формулами:

$$N = \frac{\sum W \cdot V_{\text{пер}}}{102 * \eta_{\text{пер}}}$$
 (κΒτ)

где:

 $\mathbf{V}_{\text{пер}}$ — скорость передвижения крана, м/с;

 $\eta_{\text{пер}}$ — КПД механизма передвижения крана (0,8);

 $\sum \! W \,$ — полное статическое сопротивление, определяемое как сумма сопротивлений сил трения $W_{\scriptscriptstyle TP}$ и ветровой нагрузки $W_{\scriptscriptstyle B}$, кг:

$$\sum W = W_{\rm Tp} + W_{\rm B} \quad (\kappa \Gamma)$$

- сопротивление сил трения определяется по формуле:

$$W_{\text{тр}} = (W' + W'') \cdot k_p \text{ (кг)}$$

W' -сопротивление трению, возникающее при качении колеса

$$W' = \frac{(Q_{\mathrm{Kp}} + Q_{\mathrm{\Gamma}\mathrm{p}} + Q_{\mathrm{3axb}}) \cdot 2\mu}{D_k} \quad (\mathrm{K}\mathrm{\Gamma})$$

 $\mathbf{Q}_{\kappa p}$ - масса крана, кг;

 \mathbf{D}_{κ} – диаметр ходового колеса;

 μ - коэффициент трения стального колеса по рельсу (0,08);

$$W'' = \frac{(Q_{\text{Kp}} + Q_{\text{Pp}} + Q_{\text{BAXB}}) \cdot df}{D_k} \quad (\text{KC})$$

d– диаметр подшипника колес;

f – коэффициент трения в подшипниках колеса (0,02);

кр– коэффициент, учитывающий трение реборд ходовых колес о рельсы (1,8).

Сила сопротивления ветра Wв (3 кг/т) с учётом суммарной массы крана, захватных приспособлений и поднимаемого груза, т:

$$W_{\rm B} = \left(Q_{\rm KP} + Q_{\rm PP} + Q_{\rm SAXB}\right) \cdot 3 \ (\kappa \Gamma)$$

Задача № 35

Для определения технической производительности крана необходимо воспользоваться формулами:

$$\Pi_{\scriptscriptstyle \rm T} = 3600 \, \frac{Q_{\scriptscriptstyle \rm PP}}{T_{\scriptscriptstyle \rm II}} \quad ({\scriptscriptstyle \rm T/4})$$

где: 3600 – переводной коэффициент

Qгр –масса груза, перемещаемого за 1 цикл, (т)

Tц — продолжительность одного цикла

$$T_{\rm II} = t_{\rm 3} + t_o + \left(\frac{4H}{V_{\rm rp}} + \frac{2l_{\rm Kp}}{V_{\rm Kp}} + \frac{2l_{\rm T}}{V_{\rm T}}\right) \cdot \varphi \quad (c)$$

 ϕ — коэффициент, учитывающий совмещение операций во времени (0,85);

 ${f t_3}$ — время застропки груза (${f t_3}$ =10 – 15 c); ${f t_0}$ — время отстропки груза (${f t_0}$ =10 – 15 c);

Н – средняя высота подъёма груза, м;

 $\mathbf{l}_{\kappa p}$ среднее расстояние перемещения крана, м;

 ${f l}_{{f r}}$ среднее расстояние передвижения тележки крана, м;

 $\mathbf{V}_{\mathsf{гр}}$ - скорость подъёма груза, м/мин

 $\mathbf{V}_{\kappa p}$ - скорость передвижения крана, м/мин

 $\mathbf{V}_{\scriptscriptstyle{\mathrm{T}}}$. скорость передвижения тележки, м/мин

Задача № 36

Для определения технической производительности крана необходимо воспользоваться формулами:

$$\Pi_{\mathrm{T}} = 3600 \frac{Q_{\mathrm{rp}}}{T_{\mathrm{II}}} \quad (\mathrm{T/Y})$$

где:

3600 – переводной коэффициент

Qт –масса груза, перемещаемого за 1 цикл, (т)

Тц – продолжительность одного цикла

$$T_{\text{II}} = t_{3} + t_{o} + \left(\frac{4H}{V_{\text{rp}}} + \frac{2l_{\text{Kp}}}{V_{\text{Kp}}} + \frac{2l_{\text{T}}}{V_{\text{T}}}\right) \cdot \varphi$$
 (c)

 ϕ — коэффициент, учитывающий совмещение операций во времени (0,85);

 t_3 – время застропки груза (t_3 =10 – 15 с);

 t_o – время отстропки груза (t_o =10 – 15 с);

Н – средняя высота подъёма груза, м;

 $\mathbf{l}_{\kappa p}$ – среднее расстояние перемещения крана, м;

 $\mathbf{l}_{\mathbf{r}}$ среднее расстояние передвижения тележки крана, м;

 \mathbf{V}_{rp} - скорость подъёма груза, м/мин

 $\mathbf{V}_{\kappa p}$ - скорость передвижения крана, м/мин

 $\mathbf{V}_{\mathtt{T}}$ скорость передвижения тележки, м/мин

Задача № 37

Для определения сменной производительности ленточного элеватора необходимо воспользоваться формулой:

$$\Pi_{\text{см}} = 3.6 \frac{e_0}{a} \cdot V \cdot \psi \cdot \gamma \cdot k_{\text{в}} \cdot T_{\text{см}} \quad (\text{т/смену})$$

где:

 e_0 - емкость ковша

а- расстояние между ковшами

 ν - скорость движения ленты

 ψ - коэффициент заполнения ковша

 γ - плотность груза

 $k_B = 0.7$

Тсм=8ч

Задача № 38

Для определения сменной производительности цепного элеватора необходимо воспользоваться формулой:

$$\Pi_{\text{cm}} = 3.6 \frac{M_{\text{rp}}}{a} \cdot V \cdot k_{\text{B}} \cdot T_{\text{cm}} \quad (\text{т/смену})$$

Мгр-масса единицы штучного груза

 ν - скорость движения цепи

а- расстояние между ковшами

 $k_B = 0.7$

Тем- продолжительность рабочей смены

Задача № 39

Для определения общей площади склада

необходимо воспользоваться формулами:
$$F_{\rm ck} = K_{\rm пp} \frac{K_{\rm ck} \cdot Q_c \cdot T_{\rm xp}}{q} \ ({\rm m}^2)$$

где:

 ${\bf K_{no}}$ – коэффициент, учитывающий дополнительную площадь для проходов, проездов погрузочно-выгрузочных машин и автомобилей, мест для установки весов, помещений приёмосдатчиков;

 ${\bf q}$ – средняя нагрузка на пол склада, т/м²;

 $\mathbf{K}_{\mathbf{c}\kappa}$ – коэффициент складочности, учитывающий перегрузку с одного вида транспорта на другой;

 T_{xn} продолжительность хранения грузов на складе, сут.;

 \mathbf{Q}_{c} – среднесуточный грузооборот, т.

Задача № 40

Для определения мощности привода погрузчика

необходимо воспользоваться формулой:
$$N = \frac{\left(Q_{\Pi} + Q_{\text{rp}}\right) \cdot (f + i) \cdot V_{\text{пер}}}{102 \cdot \eta_{\text{пер}}} \; (кВт)$$

 $\mathbf{Q}_{\mathbf{n}}$ – масса погрузчика, кг; где:

 ${\bf Q}_{{\bf r}{\bf p}}$ – масса груза, перемещаемого за 1 цикл, кг;

f – коэффициент сопротивления перемещению погрузчика в ходовом устройстве;

 $\eta_{\text{пер}}$ — КПД передаточного механизма (0,8);

102 – переводной коэффициент размерностей;

 $\mathbf{V}_{\text{пер}}$ — скорость передвижения погрузчика, м/с.

і – уклон пути

Перечень учебных изданий, Интернет-ресурсов Дополнительные источники:

- 1. Гундорова Е.П. Технические средства железных дорог: Электронная версия учебника. М.: ГОУ «УМЦ ЖДТ», 2006.
- 2. Хохлов А.А., Жуков В.И. Технические средства обеспечения безопасности движения на железных дорогах. М.: ГОУ «УМЦ ЖДТ», 2009.

Интернет – ресурсы:

- 1. Сайт Министерства транспорта РФ www.mintrans.ru/
- 2. Сайт ОАО «РЖД» www.rzd.ru
- 3. http://www.tehnoinfa.ru/zheleznajadoroga/
- 4. http://www.ok-jd.ru/